

New York State Trauma Advisory Committee

Performance Improvement Subcommittee October 30, 2024

Agenda

- Select mortality review
 - Michael Vella, MD; Kate Dellonte, RN, BSN; Eric Klein, MD; Maggie Ewen, MS, PA-C
- Back to the future for Mass Transfusion Protocols (MTP's)
 - Eric Senaldi, MD
- Open discussion re: autopsy reports (time permitting)

'Died In Emergency Department' Data Validation

Blunt/Penetrating Trauma, Died in ED, Arrival 1/1/2018-8/15/2024

	D	OA Case Review Dat	ta	DOA Registry Entry Data				
		Total Registry						
	Total Pts DOA (HR =	Entry Req.						
1	0, SBP = 0)	Revision to Qualify	% Total DOA with			HR or SBP = 0, Other		
	After Chart Review	as DOA_	Registry Entry	(+) HR and SBP	HR and BP = Unk	VS = Unk_		
2018	19	5	26%	2	2	1		
2019	24	13	54%	2	7	4		
2020	27	9	33%	2	5	2		
2021	38	19	50%	9	7	3		
2022	32	12	38%	5	3	4		
2023	21	10	48%	4	6	0		
2024	11	2	18%	2	0	0		
Total	172	70	41%	26	30	14		
Column Definition	Total# of DOA following chart reviews	Total # of pts w/ registry data req. revision following chart reviews	# in Column 2/# in Column 1	Total # of pts who were documented incorrectly as having + vital signs despite being DOA	Total # of pts with both HR and SBP = unk in registry despite having documentable VS	Total # of pts with inconsistent documentation W Department		
					SI	of Health		

Trauma Quality Improvement Program Penetrating Mortality Deep Dive

Spring 2023

Total Patients = 9

- Registry entry req. revision = 7
 - \circ HR = 1
 - o SBP = 1
 - SBP and GCS M= 1
 - SBP and Additional Comorbids = 1
 - Additional Comorbids= 3

Total excluded from Trauma Quality Improvement Program report after review = 1

Spring 2024

Total Patients = 6

- Registry entry req. revision = 5
 - \circ GCS M = 3
 - o HR and SBP = 2

Total excluded from Trauma Quality Improvement report after review = 2

Injury Characterization

>>Current chart documentation:

	AIS Description
1. BLE extremity deformities	*not specific enough to code an injury
open fx to LUE - the forearm is circled on the body diagram in the note	forearm fx- open
bilateral chest tubes placed- no further documentation	*not specific enough to code an injury

TOTAL ISS = 4

>>Examples of slightly more detailed chart documentation:

	AIS Description
1. bilateral femur deformities	femur fx- NFS
open fx to LUE - the forearm is circled on the body diagram in the note	forearm fx- open
3. bilateral chest tubes placed- rush of air noted	pneumothorax- NFS

TOTAL ISS = 13

Injury Characterization

	AIS Description
1. bilateral femur deformities	femur fx- NFS
open fx to LUE - the forearm is circled on the body diagram in the note	forearm fx- open
3. bilateral chest tubes placed- rush of air noted, with 500mL blood out	hemopneumothorax- NFS

TOTAL ISS = 18

	AIS Description
1. bilateral femur deformities	femur fx- NFS
2. open fx to LUE - the forearm is circled on the body	
diagram in the note	forearm fx- open
3. bilateral chest tubes placed- rush of air noted, 1000mL	hemopneumothorax - major; GT 20% blood
blood out	loss

TOTAL ISS = 25

Summary of Findings & Action Items

Findings

- Inconsistent clinical documentation leading to higher GCS M scores being entered in registry.
- HR and SBP entered as 'unk' with documented asystole or Pulseless Electrical Activity (PEA).
- (+) HR and SBP entered with documented asystole or PEA.
- Asystole or PEA documented but no Vital Signs (VS) (HR = 0, BP = 0/0) entered on flowsheet.
- Vital signs entered as 'unk' if not taken prior to ED departure even if set of VS documented within 30 mins in OR/ICU/IR.
- Injury documentation during trauma bay resuscitation not detailed enough to code injuries which would increase AIS/ISS.
- Comorbid not being thoroughly captured due to delay in chart merges of patient's actual chart and trauma chart.

Action Items

- Education faculty, residents, nursing, registrars
- Standardizing registry entry
- Audits
- Documentation changes Trauma consult note, Attending attestations
- Morning report discussion

North Shore University Hospital

Blunt/PenetratingTrauma, Diedin ED, Arrival 1/1/2018-8/15/2024

	DOA	A Case Review I	Data	DOA Registry Entry Data						
	Total Pts DOA	Total Registry								
	(HR = 0, SBP =	Entry Req.								
	0)	Revision to	% Total DOA							
	After Chart	Qualifyas	with Registry	(+) HR and	HR and BP =	HR or SBP = 0,	(+) HR but SBP	HR = 0 but (+)		
	Review_	DOA	Entry	SBP	Unk	Other VS = Unk_	= 0	SBP		
2018	5	2	40%	0	2	0	0	0		
2019	11	1	9%	0	1	0	0	0		
2020_	10	2	20%	1	1	0	0	0		
2021	4	1	25%	0	0	0	1	0		
2022	4	0	0%	0	0	0	0	0		
2023	13	2	15%	0	1	0	0	1		
2024	2	0	0%	0	0	0	0	0		
Total	49	8	16%	1	5	0	1	1		

NYC Health & Hospital - Bellevue

Blunt/Penetrating Trauma, Died in ED, Arrival 1/1/2018-8/15/2024										
	DOA	A Case Review I	Data	DOA Registry Entry Data						
	Total Pts DOA (HR = 0, SBP = 0) After Chart Review	Total Registry Entry Req. Revision to Qualify as DOA*	% Total DOA with Registry Entry	(+) HR and SBP	HR and BP = Unk	HR or SBP = 0, Other VS = Unk				
2018	0	0	0%	0	0	0				
2019	6	0	0%	0	0	0				
2020	11	1	9%	0	0	1				
2021	10	0	0%	0	0	0				
2022	32	3	10%	0	0	3				
2023	34	2	6%	0	1	1				
2024	20	1	5%	0	0	1				
Total	113	7	6%	0	1	6				

^{*}None changed whether or not patient reported DOA to TQIP

Return of Spontaneous Circulation (ROSC)

 Patient arrives with no signs of life, ROSC obtained, then patient expires. How is this documented?

Back to the Future for MTPs

Am I back in the 60's???

Eric Senaldi, MD

Deputy Chief Medical Officer, New York Blood Center

esenaldi@nybc.org 646-539-8988

Objectives

- Emergency Plans National and Regional
- Does Rh matter for Red Blood Cells (RBCs)?
- Plasma how much, what type, what temp?
- Titering to prevent hemolysis
- Whole blood filtered, platelet sparing or not
- Platelets cold or warm

EVENT AABB Level 1 Task Force AABB ASBP Message to Blood and Donors

RESPONSE PLAN FLOW CHART

Step 1. Affected Blood Collector (BC) Assesses Medical Need for Blood

- ✓ Contact local hospital customers and emergency services to determine impact of event, including:
- · Nature of emergency (e.g., disaster, terrorism)
- Number of current and expected hospital admissions
- Types of expected injuries
- · Potential effect on local donor base
- ✓ Gather information on local blood inventory levels from both BC and hospital customers.
- ✓ Calculate the medical need for blood for a nonbiological event based on three units of type O RBCs per current and expected hospital admissions resulting from the event (see Event Assessment Form).

Step 2. Affected BC Contacts AABB (ideally within 1 hour of event)

- ✓ Contact AABB (use redundant communication channels in order listed below):
 - 1. Land line: (800) 458-9388
 - 2. Cell phone: (240) 994-6700
 - E-mail: nbe@aabb.org
 - Text message: (240) 994-6700
- Satellite phone: (254) 377-3726
- Report medical need and local blood inventories

Step 3. Interorganizational Task Force (TF) Conference Call

- ✓ AABB convenes a conference call with Level 1 TF members (Level 2 TF members included if necessary—see page 42 for a list of Level 1 and Level 2 TF member organizations).
- ✓ TF determines national strategy and coordination efforts, including:
 - Message to blood community/donors
 - 2. Transportation and coordination of blood to affected BC
 - 3. Next steps until event is resolved
- ✓ AABB communicates decisions to Level 2 TF members.

Step 4. Implementation of Task Force Recommendations

- ✓ TF representatives communicate recommendations to their respective constituencies.
- ✓ TF distributes unified message to blood community and donors (e.g., joint press releases).
- ✓ TF coordinates message to the public with Department of Health and Human Services (HHS).

Nationwide Emergency Blood Plan

Blood Center

- Assess the need through local hospital and emergency services – type, number, effect on inventory and donors
- Contact Association for the Advancement of Blood and Biotherapies (AABB)
- AABB will create task force within the hour government departments related to health, major blood collectors and membership organizations, military
- Task force coordinates supplies & message
- Hub and spokes system major centers immediately ship to center in need, smaller centers backfill major shipping centers

How Much Blood Do I Need per Estimated Casualty?

- AABB Disaster Operations Handbook recommends 3 units per casualty for planning purposes A
- More recent review of 32 articles involving mass casualty events using more than 50 rbcs ^B
 - Median trauma center use per patient, same event day 3.4 rbc, 2.4 plasma, 0.5 apheresis platelet
 - Next day use compared to original day 50% rbc, 28% plasma, 16% platelet
 - Planning purpose recommendation 6 rbc, 4 plasma, 0.5 apheresis

A. Vox Sang 2017; 112:648

B. Ramsey G. Vox Sang 2020; Jul;115(5) 358-366

Managing an Emergency – Four Phases

On The Ground Preparedness

- Community Lifeline (hospitals, patients, donors)
- People (employees & families)
- Assets (property, equipment, inventory)
- Operation (mission critical services)
- Supply Chain (critical items, vendors)

9/11 Distribution

- Coming out of the summer with traditionally low inventory levels, and OR's at full blast post summer vacation
- Inventory 2500 O pos, 280 O neg
- Standing orders 2000 O pos, 325 O neg
- Planes hit the WTC
- Held standing orders
- Diverted 600 units to trauma centers
- Estimated trauma needs, plan for delays in testing and processing, ensure adequate supply
- Sourced 3000 O's in an hour with one phone call which arrived the next day
- Maintain communications with trauma centers

Department

O+ vs O- RBCs

- Problem not enough O negs, 6.5% in normal population
- vs. hospital usage of >10%
- Beth Israel Deaconess Boston ^A
 - 268 patients in 10 year retrospective review of MTPs
 - 63% male, 23% female >50, 12%<50, 86% of all patients Rh +
 - 50% mortality male, 34% female in 7 days
 - 18 of 39 Rh neg received Rh + blood, median 10 u, avg 12.5 u
 - 8 of 18 lived > 7 days, antibody screens done, 1 of 8 had D ab
 - Rate of anti D formation, 12.5% of Rh neg getting Rh pos
 - Early papers showed Anti D formation 22% not in trauma pts B,C
- 88% of MTPs could get O+,
- Females Rh neg <50 were 1.5% of patients, received
- only 12% of O negs used
- Implemented O pos for all except Rh neg females < 50
- A. Lynne Uhl Transfusion 2015 55:791-795
- B. Yazer Transfusion 2007 47:2197-201
- C. Frohn Transfusion 2003 43:893-8

Meta analysis of studies of anti-D in D neg patients transfused with D+ blood

Type of D-negative recipients receiving D-positive RBC transfusion

FIGURE 3 The diagram of incidence of anti-D immunization in D-negative recipients after D-positive RBC transfusion

- Antibody formation requires an intact immune system
- Trauma patients more units does not increase % of pts who develop anti-D 43% in 3-5 units transfused, 18% in 11-20 units

Ji Y et al Vox Sang 2022;117:633-640

Department

of Health

YORK

Modeling Risk for Women of Child Bearing Age when Using O+ RBC for resuscitation

- When using RH+ blood in women of child bearing age, fetal risk of death from HDFN is 0.3% which is counterbalanced against 24% risk of dying of hemorraghic shock.
- Risk declines as the age of the female when transfused increases.

Yazer et al. Hematology 2023 Dec;28(1):2161215. doi: 10.1080/16078454.2022.2161215.

Figure 1. Graphic representation of the risk of hemolytic disease of the fetus and newborn (HDFN) following the transfusion of RhD-positive RBCs to an injured RhD-negative female of childbearing age considering five critical events that must take place for HDFN to occur following trauma [Citation20]. The percentages in brackets are the risks of each discreet event occurring; the dark shaded icons represent the cumulative risk of each event occurring as a percentage. For example, 76% of injured adults survive the trauma and 21% become D-alloimmunized, therefore the cumulative risk of fetal death from HDFN at this stage is approximately 16%, assuming the three additional events also occur. The overall cumulative risk of fetal demise from HDFN was calculated to be 0.3%.

Plasma Ratios 1:1 vs 1:2 vs ?

- PROMMTT RCT 1245 highest level trauma patients 10 Level 1 trauma centers
- Real time data collection on infusions and interventions until resuscitation ended, also tracked in-hospital mortality, complications, subsequent treatments until death or discharge
- Increased plasma:rbc ratio associated with lower 6 hour mortality but not 24 hour or 30 day mortality
- Ratio less than 1:2 = 3-4 fold increase in risk of dying³⁶
- 2nd analysis time of transfusion vs ratio of plasma:rbc
- Early plasma transfusion <2.5 hours had half the mortality risk in 6hr, 24 hr and 30 day periods compared to no plasma or plasma >2.5 hours after admission
- Fewer rbc's used in early plasma transfusion group
- Speed to plasma transfusion more important than ratio of plasma:rbc³⁷
- PROPPR 1:1 more patients achieve hemostasis, reduced hemorrhagic mortality at 3 hours and fewer died by exsanguination at 24 hours vs 1:2 but no differences in complications or mortality at 24 hours or 30 days³⁸
- 86% of 177 major trauma units in TQIP use 1:1:1
- Meta analysis plasma vs. crystalloid pre-hospital
 - No difference in 24 hour or 30 day mortality or multi-organ failure
 - Plasma 24 hour rbc usage decreased with increased INR ratio on arrival at ER
 - No difference in plasma, platelet transfusions in 24 hours or in massive transfusion or vasopressor use in 24 hour period^A

^{36.} Holcomb, JB et al. 2, 2013, JAMA Surg, Vol. 148, pp. 127-36.

^{37.} del Junco, DJ et al. 2013, J Trauma Acute Care Surg, Vol. 75, pp. s24-30.

^{38.} Holcomb, JB et al. 2015, JAMA Vol. 313, pp. 471-82

"A" Plasma

- AB is universal plasma, problem is 4% of population is AB, not enough to keep thawed at all Level 1 trauma – cut in half as female plasma is not used due to TRALI mitigation
- ARC data over 50% increase in % of AB distributed
- HABSWIN study 73% of AB plasma transfused to non-AB patients^A
- A plasma is the answer, compatible with 85% of people
- PROPPR trial¹
 - 3 of 12 sites used type A thawed
 - 2 of 3 untitered, 1 titered 1:25
 - 141 A units transfused to AB or B patients no evidence of hemolysis
 - 2 of 12 hospitals had 25% wastage of AB plasma
- Mayo Clinic Retrospective review ²
 - 254 patients 35 incompatible 14%
 - No difference in clinical outcomes across wide variety of indicators – Safe to use Group A, they do not titer
 - Reduce AB plasma 96%

- U of Massachusetts Four year retro review ^B
 - 385 patients, 85% compatible
 - 23 patients incompatible, median use 2 units
 - 3 weak DAT+ 1+, no hemolysis seen
 - Used thawed plasma no titers done
 - No differences in morbidity or mortality

Mitigating Factors for Use of "A" Plasma

- You only need use it for as long as it takes to type the patient and thaw ABO identical plasma
- Early in resuscitation, most of the patient's red blood cells will be the O rbcs you have transfused
- Group A donors have low anti-B titers
- Severe complications with Anti-B hemolysis are rare
- Group B & Group AB have soluble B antigens to adsorb "A" antibodies

Dartmouth Experience

- Dartmouth rural trauma center 100 miles to next Level 1 trauma center
- Four year retrospective review 38 MTPs with a focus on speed to transfusion of plasma
- 26 minutes longer to dispense plasma than rbcs
- Avg rbcs transfused before plasma 8 units
- 1/3 patients had >=10 units rbc transfused before plasma
- Reason 17 minutes to thaw plus time to transport
- Wanted liquid plasma but not available from ARC
- Thawed group A may ensure rapid plasma availability, use <1:50 titer
- Only 2 of 81 units titered were > 1:50.

Thawed vs. Liquid Never Frozen

- PROPPR trial ¹ requirement, plasma at bedside within 10 minutes of admission.
 - 11 of 12 hospitals used thawed plasma
 - 1 hospital used liquid plasma
- Thawed plasma 5 day limit after thawing
- Liquid plasma plasma which has been refrigerated but never frozen
- Liquid plasma expiration is 5 days after expiration of wb anticoagulant
 - cpd/additive 26 days, cpda-1 40 days
- FDA licensed, available since 1940's
- Used in Sweden interchangeably for over 30 years, storage to 14 days only, roughly 1/3 liquid, 2/3 FFP
 - 10 yr observational study 90k pts, 350k units no difference in clinical outcomes between FFP and liquid regardless of age of liquid even beyond 15 days²
- Liquid Plasma more cost efficient for helicopter & out of hospital transfusion 3
 - Less wastage as <8% of plasma used for trauma in the field
 - When returned to hospital, 58% thawed plasma transfused, 34% expired
 - Liquid plasma has extended shelf life compared to thawed plasma
- 1. Novak DJ et al Transfusion Volume 55, Issue 6, June 2015, Pages: 1331–1339
- 2. Norda et al J Trauma 2012 72(4) 954-961
- 3. Adams PW et al. Journal of Trauma and Acute Care Surgery doi:10.1097/TA.2406

Liquid Plasma Profile

Analyte reference	Day									
range (units)	1	2	3	4	5	10	15	20	25	30
FBG 1.63-4.55 (g/L)	2.92 (0.30)	2.87 (0.27)	2.90 (0.25)	2.83 (0.32)	2.83 (0.33)	2.82 (0.29)	2.76* (0.25)	2.78* (0.24)	2.69*† (□ 0.26)	2.75*† (0.24
FII 0.70-1.20 (IU/mL)	0.92 (0.15)	0.93 (0.16)	0.90 (0.12)	0.94 (0.14)	0.91 (0.14)	0.94 (0.18)	0.91 (0.18)	0.90 (0.17)	0.91 (0.13)	0.90 (0.10
FV 0.70-1.40 (IU/mL)	1.10 (0.18)	1.10 (0.30)	1.09 (0.23)	1.11 (0.25)	1.04 (0.32)	1.04 (0.27)	0.77*† (0.24)	0.73*† (0.17)	0.64*† (□ 0.17)	0.50*† (0.12
FVII 0.70-1.20 (IU/mL)	0.97 (0.21)	0.91* (0.19)	0.87* (0.20)	0.84* (0.17)	0.82* (0.19)	0.78*† (0.16)	0.78*† (0.19)	0.93 (0.46)	1.25 (0.98)	1.08 (0.73
FVIII 0.50-1.50 (IU/mL)	0.72 (0.18)	0.68 (0.22)	0.67 (0.18)	0.66 (0.18)	0.64* (0.17)	0.63* (0.16)	0.56*† (0.15)	0.56*† (0.14)	0.51*† (0.16)	0.50*† (0.14
F IX 0.50-1.50 (IU/mL)	0.86 (0.16)	0.88 (0.17)	0.90 (0.17)	0.88 (0.17)	0.87 (0.17)	0.86 (0.18)	0.84 (0.15)	0.80*† (0.14)	0.80*† (□ 0.13)	0.76*† (0.13
FX 0.7-1.2 (IU/mL)	1.10 (0.18)	1.15* (0.18)	1.08 (0.18)	1.12 (0.18)	1.11 (0.20)	1.11 (0.18)	1.11 (0.21)	1.08 (0.16)	1.15 (0.27)	1.12 (0.23
FXI 0.65-1.50 (IU/mL)	0.93 (0.07)	0.93 (0.08)	0.93 (0.10)	0.94 (0.09)	0.94 (0.09)	0.93 (0.09)	0.91*† (0.08)	0.91† (0.09)	0.90*† (□ 0.08)	0.89* (0.09
FXII 0.65-1.50 (IU/mL)	0.89 (0.16)	0.91 (0.15)	0.91 (0.16)	0.91 (0.15)	0.90 (0.15)	0.91 (0.15)	0.94*† (0.14)	0.92*† (0.14)	0.94*† (0.14)	1.05 (0.32
FXIII 0.70-1.40 (IU/mL)	1.13 (0.23)	1.13 (0.24)	1.13 (0.24)	1.12 (0.23)	1.11 (0.23)	1.11 (0.24)	1.12 (0.22)	1.13 (0.23)	1.11 (0.22)	1.10 (0.23
VWF 0.50-1.50 (IU/mL)	0.73 (0.17)	0.71 (0.20)	0.71 (0.19)	0.70 (0.18)	0.70 (0.19)	0.58*† (0.17)	0.50*† (0.17)	0.44*† (0.17)	0.40*† (0.17)	0.40*† (0.18

- 0-30 days factor activity, At least 50% or more activity in all factors at day 15
- Minimal changes in FII, FX, FXIII
- FBG, FIX, FXI no change to day 5, significant reduction after day 20
- FXII no change to day 5 then increase afterward similar pattern in FVII cold activation
- vWF, FV, FVII, FVIII no change to day 5, significant difference by day 15, 30% decline vs. day 1, still at 50% or better at day 15
- No change in AT, PLG, PC but significance drop in PS but remained at 53% level
- Increase in PT and aPTT by 2 sec, over 30 days, significance reached at day 15
- Recommendation limit use to less than 15 days of age, use with FFP where feasible in MTP A
- Liquid plasma can be prepared from apheresis plasma or whole blood plasma with no differences in factors during storage B

Liquid vs. Thawed

- Compare thrombin generation and clot kinetics liquid plasma and FFP at day 0 and storage limit
- Thrombogram at day 0 showed liquid plasma higher than thawed FFP in endogenous thrombin potential
- Higher performance continued until day 26 when liquid plasma equals thawed plasma on day 0
- Liquid retained 86% of day 0 potential at day 26
- TEG Liquid had higher MA, G and TTG values at day 0 than thawed plasma
- At end of storage both were equal
- PT increased 2.2 seconds at day 26, aPTT increased 3.1 seconds at day 26 for liquid plasma
- All Factors on day 26 at 88% of day 0 except FV and FVIII, 39% and 60% resp.
- All inhibitors stable at day 26 except PS, 29%
- Initial hemostatic profile better in liquid than in thawed at day 0
- Residual platelet count 1.5x higher in liquid than thawed better initial clot formation
- As platelets age, release vWf and microparticles, aiding thrombin formation
- Freezing plasma destroys platelets
- Explains why TEG and thrombin generation are better in liquid plasma
- Done by the trauma center in Houston which uses liquid plasma instead of thawed FFP
- What do you prefer, better coag factor percentages or better thrombin formation and clots?????

Titering

- Various methods but no universal technique for titering
- Different methods give different results which is also dependent on ABO and antibody tested^G
- Titers differ depending on sample, donor sample higher by 2 4 titers vs. segment, vs. bag sample^H
- Transfused antibodies will complex with free A and B substance to form immune complexes and will also be diluted out^C
- Swedish military titers anti A and anti B in O donors IgM 100, IgG 400^B
- Hemolysis rare 25 cases O apheresis to non-O patients, titers > 1000 no consensus but general recommendation, anti-A and anti-B titers saline medium 100-200, IgG titer 250-400^D
- Using saline titer at 200, approximately 5-30% donors could not be used as WB compatible F
- Use of immediate spin threshold of 50 defer 20% Group O WB and 14% Group A plasma
- In O donors, anti-A is generally in higher titers than anti-B though if anti-B is high so is anti-A
- No seasonality to titer levels is seen I

C. Sikora J et al. Transfusion 2018:58:1006-101

ABO antibody levels

Anti-A antibodies

B donor median 1:8, O donor median 1:128

Karafin et al. Transfusion 2012 Oct;52(10):2087-93.

Anti- B antibodies

A donor median 1:8, O donor median 1:128

NEW YORK

Whole Blood(WB) Use

- Vietnam war last massive use of whole blood
- Used titer of 1:100, risk of hemolysis, 1:10,000^C
- Reconstituted WB has 180 ml of preservative F =
 - acidotic ph<7 after 2 weeks
 65% coagulation factor activity
 - anemic 30% hct thrombocytopenic 80,000
- Earlier is better nonhospital use, WB in helicopter & ambulance
- Mortality rate increases 5% per minute in hemorrhagic shock^A
- Less colloid and crystalloid to lessen risk of trauma coagulopathy
- Use in London Used within 37 minutes of accident and 3 units average used^B
- Use of WB in patients without brain injury may result in fewer transfusions compared to component therapy^D
- Can use in pediatrics >3years old and >15kg, max dose 30ml/kg^E
 - No difference in platelet number or function for pediatric trauma cases compared to room temperature platelets ^G

Whole Blood Use – Meta Analysis

- Meta- analysis civilian use WB odds ratio vs Component 0.72 for 24 hour mortality, 0.65 for early mortality <6 hour, no difference in late mortality 28 day, higher ratio of plt/rbc and plasma/rbc with wb use H
- Meta analysis 24 papers 5,164 pts. LTO Whole Blood vs. Component therapy ^A
 - WB Improved 24 hour survival adults, no difference in late survival
 - WB Improved early and late survival children
- Meta analysis 21 papers LTO Whole Blood vs. Component therapy Adult only B
 - No differences in early mortality (3-6 hr), 24 hour, late mortality or overall in-hospital mortality
 - WB Decreased 4 hour rbc and plasma transfusions
 - WB Decreased 24 hour rbc transfusions but similar plasma transfusions
- Meta analysis 16 papers LTO Whole Blood vs. Component therapy Adult only ^C
 - WB lower 24 hr mortality, similar 30 day mortality
 - WB –reduced rbc transfusion at 6 hour and 24 hour,
 - WB- no difference in plasma or platelet transfusion at 6 or 24 hour
 - WB No difference in ICU length of stay
- H. van der Horst RA et al. J Trauma Acute Care Surg 2023 Aug 1;95(2):256-266
- A. Morgan KM et al. CCM July 2024 52;(7) e390-404 DOI:10.1097/CCM.000000000006244
- B. Meizoso JP et al. J Trauma Acute Care Surg2024;97(3):460-470
- C. Ngatuvai, M et al. Jour of Surg Res July 2023;287; 193-201 DOI:10.1016/j.jss.2023.02.010

Whole Blood Product

- Use leukoreduced platelet sparing male WB to prevent TRALI
- Can be Rh+ or Rh- depending on mix of patients seen
- Can go to full Rh+ if need be
- Titer levels dependent on suppler can be 1:50 -1:256
- Procoag and anticoag maintain good levels to 11 days^A
- Platelet concentration is about half expected in whole blood^B no rotator necessary, can lead to rbc hemolysis
- Platelets are activated with shortened clotting time, no effect on maximum clot firmness^D
- Non platelet sparing filtration ^E
 - Decreased maximum clot strength
 - Decreased rate of clot growth
 - Decreased maximum thrombin generation
- Limit use to 2-4 units^C
- Monitor LDH, total bilirubin, haptoglobin, for 2 days post
- A. Rahbar EShock 2015;44(5):417-25
- C. Yazer M Journ Trauma Acute Care Surg 2016;81:21-26
- E. Siletz A Jour Trauma Acute Care Surg 83(3):420-26
- B. Yazer M Transfusion 2016;56:596-604
- D. Wu X Br J Haem 2017;179:802-10

Analysis of Filtered Whole Blood

- Filter successfully removed white blood cells while retaining platelet count and hemoglobin
- Platelet function, aggregation using collagen, shows greatest decline immediately after filtration and continues to worsen
- May be due to activation during filtration
- Clotting time was similar before and after filtration but increased over time and became abnormal on day 14
- Mean clot firmness remained in normal range but deteriorated by day 7 A
- Similar findings in another paper with significant reduction in aggregation and little effect on thrombin generation.
- Do you need the platelets in whole blood for trauma????

Whole Blood Filtration

- Platelet Sparing(PS) or No Platelet Sparing (nPS) A
- Testing
 - PS had more platelets- 7.1x10e9 vs 1x10e9 for nPS
 - PS normal TEG vs. grossly abnormal TEG for nPS with higher reaction times, lower alpha angles, and lower maximum amplitude
 - Platelet function testing PFA-100 closure more common with PS-72% than nPS-4%
- PT, PTT and factor activities no difference in PS or nPS though Factor V and VIII were higher in nPS
- Thrombin generation higher in PS vs nPS
- PS platelet count drops in two weeks but hemostasic function is maintained

Non-filtered Whole Blood

- Non-leuko red blood cells vs leukoreduced showed no difference in mortality in trauma patients ^{C,D}
- Reduced platelet count over time with decline in platelet aggregation
- May be due to aggregated masses composed of fibrin or fibrinogen which interacts with platelets
- None of this resulted in changes in thromboelastography findings
- Regardless of anticoagulant, CPD, CP2D, or CPDA-1 all exhibited very little change beyond day 21 so theoretically these may be expanded to 35 days
- Fresh is better but old will work ^E

Cold Storage Platelets (CSP)Manufacturing and Storage Conditions

- Blood establishments should prepare CSP from apheresis platelets suspended in 100% plasma or an FDA-approved PAS.
- Blood establishments must place CSP that have not been treated with an FDA-approved pathogen reduction device at 1-6C no later than 4 hours from the end of collection to assure that the risk of bacterial contamination is adequately controlled (21 CFR 606.145(a)).
- Blood establishments should place pathogen-reduced apheresis
 CSP in cold storage at 1-6C no later than 4 hours after completion of the pathogen reduction process.
- Blood establishments must continuously store CSP at a temperature of 1-6C (21 CFR 640.24(d)(2)), must contain CSP at a temperature of 1-10C during shipment (21 CFR 600.15(a)), and should not return CSP placed in room-temperature conditions back into cold-stored inventory or relabel CSP as RTP.
- For CSP stored at a temperature of 1-6C for a period of up to 14 days, agitation is optional (21 CFR 640.25(a))

Cold Platelets in Use

- As good or better hemostatic product as warm A, A2
 - Aggregation response, clot strength via thromboelastography, adhesion to collagen better with cold than room temperature
 - Agitation is not required for cold platelet storage
- Do not circulate as long as warm ^B
- Benefit may be better product, increased shelf life by decreasing risk of sepsis by inhibiting bacterial growth G
- Enhance endothelial barrier integrity and decrease endothelial cell permeability as well or better than warm ^C
- Decrease nonspecific adhesion to endothelial cells
- Enhanced aggregation to agonists faster stronger, longer lasting clot with cold platelets
- Better clot retraction properties leading to better structural attributes = stronger more stable clots ^E
- RCT 5 trauma centers, phase 2 cold stored vs. warm, mortality at 24 hours, 5.9% cold, 10.2% warm p=0.26, no difference in thromboembolism or adverse events H
- Variations in cold storage
 - Thermal cycling (1 hour RT every 11 hours cold) may increase recovery & survival over cold platelets but does not equal room temperature storage D
 - Cold storage extension and inventory management may be helped if room temperature platelets held for 4 days then
 refrigerated afterwards these were equivalent to initial cold stored over 21 day period ^F
 - Platelet count, lactate production, glucose consumption, surface phosphatidylserine, aggregation all similar
 - pH higher in delayed cold platelets
- A. Reddoch KM Shock 2014;41(Suppl 1):54-61
- C. Baimukova G et al. Transfusion 2016;56:S52-64
- F. Wood B et al Vox Sang 2018;113;403-411

- A2. Reddoch KM Shock 2016;45:220-27
- D. Vostal JG Transfusion 2018;58:25-33
- G. Ketter PM et al. Transfusion 2019;59;1479-89
- B. Murphy S Transfusion 1976;16:2-3
- E. Nair PM et al. Br J Haematol 2017 Jul; 178(1):119-129

Departmen of Health

H. Sperry JL et al. Ann Surg 2024 May 6 doi: 10.1097/SLA.0000000000006317

Decisions, Decisions

- Platelets
 - Room temp vs. cold storage
- Plasma
 - Liquid vs. thawed
 - Group A as universal or not
 - Titer what level or no titer
- Whole Blood
 - Leukoreduce or not
 - Platelet sparing filter or not
 - Titer or not
- MTP is a relay race. O+rbc, Group A plasma, liquid plasma, or Group O WB get you off to a fast start when time is blood lost, trauma coagulopathy, increased mortality.
- Pass the baton to ABO identical rbcs, fresh thawed FFP, apheresis platelets and cryoprecipitate as the finishers.

